Identifying graph clusters using variational inference and links to covariance parametrization.

نویسنده

  • David Barber
چکیده

Finding clusters of well-connected nodes in a graph is a problem common to many domains, including social networks, the Internet and bioinformatics. From a computational viewpoint, finding these clusters or graph communities is a difficult problem. We use a clique matrix decomposition based on a statistical description that encourages clusters to be well connected and few in number. The formal intractability of inferring the clusters is addressed using a variational approximation inspired by mean-field theories in statistical mechanics. Clique matrices also play a natural role in parametrizing positive definite matrices under zero constraints on elements of the matrix. We show that clique matrices can parametrize all positive definite matrices restricted according to a decomposable graph and form a structured factor analysis approximation in the non-decomposable case. Extensions to conjugate Bayesian covariance priors and more general non-Gaussian independence models are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Graph Clusters using Variational Inference and links to Covariance Parameterisation

Finding clusters of well-connected nodes in a graph is useful in many domains, including Social Network, Web and molecular interaction analyses. From a computational viewpoint, finding these clusters or graph communities is a difficult problem. We consider the framework of Clique Matrices to decompose a graph into a set of possibly overlapping clusters, defined as well-connected subsets of vert...

متن کامل

Variational Inference for Gaussian Process Models with Linear Complexity

Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian proc...

متن کامل

Graph Partition Strategies for Generalized Mean Field Inference

An autonomous variational inference algorithm for arbitrary graphical models requires the ability to optimize variational approximations over the space of model parameters as well as over the choice of tractable families used for the variational approximation. In this paper, we present a novel combination of graph partitioning algorithms with a generalized mean field (GMF) inference algorithm. ...

متن کامل

Variational Inference for Sparse Spectrum Approximation in Gaussian Process Regression

Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...

متن کامل

Inferring preference correlations from social networks

Identifying consumer preferences is a key challenge in customizing electronic commerce sites to individual users. The increasing availability of online social networks provides one approach to this problem: people linked in these networks often share preferences, allowing inference of interest in products based on knowledge of a consumer’s network neighbors and their interests. This paper evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 367 1906  شماره 

صفحات  -

تاریخ انتشار 2009